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Abstract

The suitability of various reflections for diffraction measurement of bulk residual stresses in austenitic steel after
plane-strain deformation is investigated by self-consistent calculations. Earlier findings (for tensile-deformed fcc
materials) that 311 is particularly well suited was not confirmed. In the present calculations 111 and 422 turned out
to be the best (least bad) reflections. The new results have led us to reconsider the earlier findings.
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1. Introduction [8,9]. Only measurements diulk stresses are rel-
evant in this connection. Neutron diffraction has in
Residual stresses/internal stresses are of greapractice been the experimental tool of choice (e.qg.
theoretical and practical interest. Comparison [2,3,6—-13), but measurement with hard X-rays
between calculated and experimental intergranular from synchrotron sources is a possible alternative,
stresses (type-2 stresgd$) introduced by plastic  allowing stress measurements in individual grains
deformation can help us to validate (or invalidate) as a supplement to the traditional measurements of
various models for plastic deformation of polycrys- average stresses in populations of grains with simi-
tals. So far most of the calculations have been lar orientationg14]. The general conclusion from
based on self-consistent models, €&-7], but such comparisons is that model calculations and
recently finite-element modelling has been added experiments agree quite well but not perfectly.
Residual “macroscopic” stresses (type-1 stresses
[1]) have very important practical implications.
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described above. Our work thus includes the whole
spectrum of theoretical and practical implications
of residual/internal stresses.

When one measures Macroscopic
residual/internal stresses by diffraction methods
(using a constant-wavelength technique), one sel-
ects one or more reflection(s) and measures the
corresponding line shift(s), the lattice strain(s).
Thus, one uses specific grains with specific lattice
orientations as stress monitors, and these grains are
not necessarily representative for the overall stress
state. Normally there will be superimposed inter-
granular stresses. Therefore the selection of the
proper reflection(s), the selection of the proper
grains, is crucia. The normal rule-of-thumb is that
one should select high-indices or low-symmetry
reflections. In the present work we take a closer
look at the suitability of various reflections—with
reference to bulk stresses as measured with neu-
trons or hard X-rays as for instance produced in a
synchrotron (in this connection measurements of
surface residual stresses by traditional X-rays like
CuK,, are irrelevant because they do not refer to
the bulk).

The present authors [5] caculated the
residual/internal intergranular stresses developed
during tensile deformation of initially texture-free
fcc polycrystals (aluminium, copper, austenitic
steel) using Hutchinson's rate-independent self-
consistent model [15]. More precisely, we calcu-
lated the lattice-strain norma components aong
the tensile direction and al ong the direction perpen-
dicular to the tensile direction for six crystallo-
graphic planes—for six reflections—as function of
the applied stress accounting for elastic anisotropy.
For most crystallographic planes the lattice-
strain/applied stress relation deviated very signifi-
cantly from linearity. For the elastically anisotropic
materials (copper and steel) the {311} plane (the
311 reflection) came closest to linearity, i.e. the
311 reflection was most representative for the over-
al stress in the directions considered. For alu-
minium three of the six reflections—311, 331 and
531—were about equally close to linearity. For
some reflections, 200 for instance, there were very
great differences between the deviation from lin-
earity for the elastically anisotropic materials cop-
per and steel and the almost elastically isotropic

auminium. We aso monitored the dlip patterns in
the different materials, and we found practicaly
identical dlip patterns for the three materials apart
from the very early stage of plastic deformation
(the actual dlip pattern was about halfway between
the Taylor [16] and the Sachs [17] dlip patterns).
Thus, the difference in lattice strain between elasti-
cally isotropic and elastically anisotropic materias
is not related to a difference in dlip pattern.

Clausen et a. [10] recorded the lattice-
strain/applied stress relation for an austenitic steel
by neutron diffraction and found a quite good,
though not perfect, agreement with the calculations
in [5]. Actualy the stedl investigated by Clausen
et a. [10] had some initial texture, and therefore
they compared their measurements with calcu-
lations which were dlightly different from those in
[5], because the texture was included.

In the present work we repeat the calculations
on austenitic stee from [5] but for plain-strain
deformation in order to check the generality of the
conclusion on the proper selection of reflection
drawn in [5]. The present calculations include a
complete mapping of the lattice strains in two-
dimensiona orientation space as compared to the
two directions in [5].

2. The calculations

The present calculation procedure is basically
identical to that in [5]. We have actualy, instead
of the code used in [5], used an elastic/plastic self-
consistent code written by Tomé and co-workers
which is basically the same as the code used by
Turner and Tomé [4] on Zircaoy—because
Tomé's code includes a procedure for the calcu-
lation of the lattice strains in arbitrary directions
which comes in handy in the present work. The
code used in [5] and TomE's code have identical
theoretical foundations, and it has been checked
that they produce practically (within computational
errors) identical results for identical conditions.
Thus, the only real difference between the calcu-
lations in the present work and the calculations in
[5] is the difference between tensile strain and
plane strain, and therefore we are not going to
repeat the description of the procedure. We shall
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only specify the procedure for implementing plane-
strain deformation. Plane strain deformation may
be seen as an approximation for rolling. We there-
fore name the principal directions with reference
to rolling: the rolling direction RD is x;, the trans-
verse direction TD is X,, and the normal direction
ND is X5, but the actual stresses and strains refer
to plane-strain compression as executed in a chan-
nel-die compression experiment with x, as the non-
constrained direction and Xx; as the compression
direction.

During loading we enforce the following con-
ditions:

011 = O1p = O3 = 03, = 0 D
€2 =0 )

We control the deformation process by controlling
£43. Since the material is texture-free and hence
isotropic, it follows that

€, =Ep =63 =0 (3
and of course
€11 = —&z3 4

since we only consider deformation by shear. Dur-
ing unloading the two non-zero normal stress
components are reduced to zero as shown in Fig.
1. Asaso shown in Fig. 1 unloading is performed
a ND strains of —0.002, —0.007, —0.012 and —
0.02 which corresponds to the unloading strains in
[10]. The selection of the same unloading strains as
in [10] is just an arbitrary decision with no special
consequences, and therefore we have not bothered
to trangdlate the unloading strains from [10] to equi-
valent von Mises strains for plane strain.

In [5] we quoted the deviations from linearity
as function of plastic strain for the lattice strains
corresponding to the six reflections, and we stated
that these deviations were practically identical to
the residual lattice strains after unloading from the
respective plastic strains—because there was no
plastic strain during unloading. In the present work
we first, for the three main directions, calculate the
residual lattice strains in austenitic steel after
unloading from various plane-strain plastic strains
(as shown in Fig. 1) for the six reflections from
[5] plus two more. By implication these residual
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Fig. 1. The four loading/unloading sequences as illustrated by
the normal stresses in the RD, TD and ND directions versus
strain aong ND.

lattice strains are practically identical to the devi-
ations from linearity during loading, cf. [5]. Then
we calculate the lattice strains in all directions for
the eight reflections after unloading from 2%
strain. The results from the latter calculations
inspire supplementary calculations for tensile
deformation.

3. Results

First we calculated the average residua lattice
strains for the reflections 111, 200, 220, 311, 331,
420, 422 and 531 in the RD, TD and ND directions
after plane-strain compression (along ND) and
unloading for a “specimen” consisting of 1000
grains of initially random orientations as shown in
Fig. 2. These calculations apparently confirm the
results from [5], viz. that in a situation where the
macroscopic residual stress is zero the 311 reflec-
tion (as indicated with broken lines) comes closest
to indicate a residual stress of zero (comes closest
to linearity).

However, we then decided to map out the
residual lattice strains after loading to 2% plane-
strain compression and unloading in two-dimen-
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Fig. 2. Cadlculated lattice strains in the RD, TD and ND directions after unloading from plane-strain compression versus unloading

strain along ND.

sional orientation space (in lattice-strain pole
figures) for the eight reflections as shown in Fig.
3 (calculated for 10,000 grains of initially random
orientations over a 2.5 by 2.5 degree grid). The
largest deviations from zero for any orientation are
summarized in Table 1. Now 311 does not perform
particularly well. The 422 and 111 reflections have
the smallest maximum deviation from zero.

4. Discussion

We have investigated the lattice strains in tex-
ture-free austenitic stee subjected to plane-strain
compression and subsequent load relaxation (and
by implication the derivation from linearity of the
lattice strains versus applied stress) by Hutchin-

son’'s self-consistent model [15]. The am is to
define a “proper” selection of reflection(s) for the
measurement of macroscopic residual/internal
stresses by bulk diffraction methods (neutrons or
hard X-rays).

In the earlier work on tensile deformation [5]
(based on “measurements” parallel to and perpen-
dicular to the tensile direction) we found that the
311 reflection was the best choice—and this con-
clusion was substantiated by experimental neutron
investigations [10]. In the present work we find
that the 311 reflection is also the best choice for
measurements in the three main directions of plane
strain (RD, TD and ND as referred to rolling
deformation). However, we find that this con-
clusion does not hold for measurements in other
directions. We cannot offer any explanation for the
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Fig. 3. Cadlculated residua lattice-strain pole figures for the eight reflections after unloading from 2% plane strain compression aong
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Table 1

Calculated largest deviation from zero lattice strain (in units of
microstrain) after 2% plastic strain and unloading for the eight
reflections considered for plane strain and tension

Reflection Plane strain Tension
111 103 55
200 511 397
220 258 197
311 161 112
331 155 178
420 176 172
422 81 90
531 150 182

apparent fact that 311 is particularly well suited for
measurements in the main directions both for ten-
sile and plane-strain deformation. For our plane-
strain investigation Table 1 indicates that the 422
and 111 reflections are best suited (they have the
smallest maximum deviation from zero). For 111
this is quite surprising since it contradicts the gen-
erally accepted rule-of-thumb that one should go
for high-indices and low-symmetry reflections.
Furthermore one should notice that 111 is not just
an average reflection. The <111> direction
(perpendicular to {111}) is both elastically and
plastically the hardest direction in fcc materials.
When we compare the present results for plane-
strain deformation (8 reflections, all directions)
with the results for tensile deformation from [5] (6
reflections, 2 directions), the obvious conclusion is
that we considered too few reflections in [5] and
in particular too few directions. Therefore, we have
repeated the present calculations (as presented in
Fig. 3 and Table 1) for tensile deformation (8
reflections, all directions) for loading to 2% strain
followed by unloading. The largest deviations from
zero lattice strain for any orientation are added in
Table 1. Again one notices that the 311 reflection
has lost its status as a particularly suited reflection
and that the 422 and the 111 reflections provide the
best (the least bad) indication of the macroscopic
residual stress of zero. Finally one notices that the
200 reflection maintains its status as the reflection
least representative for the macroscopic stress as
aready established in [5]. In Fig. 4 we show two
examples of the residual lattice-strain pole figure

for the 422 reflection calculated for 10,000 and
1000 grains of initidly random orientation
deformed 2% in tension and then unloaded. For
tensile deformation of an ensemble of grains of
initially random orientations orientation space is
ideally one-dimensional, i.e. the residua strain
pole figures should have rotational symmetry. This
is amost the case for 10,000 grains but not parti-
cularly for 1000 grains. Thus, we need at least
10,000 grains to get sufficiently good statistics.
Close comparison of Figs. 2 and 3 shows certain
inconsistencies which are explained by the rela
tively poor statistics in Fig. 2 with only 1000
grains. Earlier self-consistent calculations have
used as low as 385 grain orientations and yielded
accurate macroscopic results [18], but the present
calculations suggest that a similar number of grains
are needed within the subset of grains representing
the reflections to obtain accurate results for the
intergranular and residual strains.

Our preliminary conclusion, based on the results
for plane-strain and tensile (and compression)
deformation, is that the 111 and 422 reflections are
the best indicators for the macroscopic stress state
in texture-free (elastically anisotropic) fcc
materials. However, with reference to our con-
clusion in [5] based on too few data that 311 is the
best reflection, we recommend great caution when
the deformation history is unknown.

Our results also indicate the magnitude of the
error that may result from an “improper” selection
of reflections. If we take the worst case, the 200
reflection in plane strain (Table 1), the residual lat-
tice strain of 551 microstrain (x10~°) could be con-
verted to a residual stress of ~80 MPa (with the
diffraction elastic constant for the 200 reflection of
150 GPaderived in [5]) instead of the correct value
of zero for a specimen which has been loaded to
a stress of 270 MPa and unloaded (see Fig. 1).

If we know the approximate deformation history
of our specimen, we are in a much better situation
to select the proper reflection(s) (and the proper
measuring directions)—because we can do model-
ling as described in the present work. In such mod-
éling one must include the actual texture of the
specimen (in the present work we have dealt with
texture-free material). If we imagine a material
with a strong cube texture (with the crystallo-
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Fig. 4. Calculated residua lattice-strain pole figures for the 422 reflection after unloading from 2% tensile strain shown in equal-
area projection for 10,000 grains and for 1000 grains. T stands for the tensile direction.

graphic <100> axes preferentially parallel to RD,
TD and ND), and if we want to monitor the
residual stress by measurements in the RD, TD or
ND directions, we should use the 200 reflection
because it represents the majority of the grains,
even in spite of the fact that this is the worst
reflection for texture-free material.

As to the effect of texture, we may quote the
work of Pang et al. [12]. They determined exper-
imentally the orientation distribution of the residua
lattice strains in a tensile-deformed stainless
steel—corresponding to our calculations in Fig. 4.
Their material had a relatively weak, not
rotationally symmetrical initial texture, and the
resulting orientation distributions deviated very
significantly from rotational symmetry. This
clearly demonstrates that even weak textures have
a significant effect. This may be taken as a justifi-
cation for the approach in the present work, viz.
to do calculations for texture-free material without
having any experiments on texture-free material
for comparison. As soon as actual textures are
involved, parameter space soon becomes unman-
ageable.

Nevertheless, it is obvious that dedicated experi-
ments with neutrons or synchrotron radiation to
support (or disprove) the present results would be
very important—as would all dedicated experi-
ments to elucidate the effect of the choice of
reflection(s) on the measurements of residual
stresses. Considering the practical importance of
residual stresses, the number of such dedicated
experiments reported so far is limited. Wang et al.

[11] have measured the lattice strains in an austen-
itic steel rolled to 48% reduction for the reflections
111, 200, 220 and 311 in different directions in the
ND/RD, the RD/TD and the ND/TD planes with
neutron diffraction. 48% reduction is a much
higher strain than that used in the present work, so
the numerical results cannot be compared with
those in the present work, but one may compare
the signs of the lattice strains for the four common
reflections and the common directions (those on
the ND/RD and ND/TD radii and on the periphery
of the pole figuresin Fig. 3). It turns out that even
the signs are different for many combinations of
directions and reflections. However, this difference
does not invalidate our calculations. The materials
used in the work of Wang et al. and in our work are
quite different: the material in the work of Wang et
a. contains a substantial fraction (38%) of marten-
site and the austenite phase is strongly textured,
whereas our materia is a texture-free single-phase
austenite. Furthermore, at the high strain dealt with
by Wang et al. there is a significant contribution
of mechanical twinning in the austenite phase
which is a complication that we do not have to
consider at the low strains in our work. One may
notice that Wang et al. among the four reflections
investigated find 111 to come closest to the calcu-
lated Hill results (calculations which should be
basically similar to our calculations).

In the present and the earlier work we have used
Hutchinson's  rate-independent  self-consistent
model. We do not believe that the use of other
advanced self-consistent models like rate-depen-
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dent models would make much difference. In our
opinion advanced self-consistent models (with
elastic-plastic interaction between the individua
grains and the continuum matrix as opposed to the
elagtic interaction in the first self-consistent model
proposed by Kroner [19]) are among the most
redlistic “1-site models’ [20] (models which con-
sider individual grains interacting with a con-
tinuum matrix). It is obvious, however, that from
a theoretical point of view “n-site models’ [20]
which consider the actual interaction of individual
grains with their individual neighbour grains are
more redistic than 1-site models. In practice such
n-site models are normally based on finite-element
modelling (FEM). However, we are not aware of
any FEM results which we can relevantly compare
with the present self-consistent calculations for
plane strain. Dawson et a. [8] have made FEM
investigations of the residual lattice strains in ten-
sile-deformed ferritic steel. They found that the
400 reflection had a rather specia behaviour in the
transverse direction, which is in formal qualitative
agreement with the results for 200 in elastically
anisotropic materials in [5]. It is questionable
whether this forma agreement (between fcc and
bce materials) is of any direct significance. But we
take it as an indication that the strangest result we
have seen in our self-consistent modelling, the
behaviour of 200 in the transverse direction for ten-
sile-deformed fcc materials, is not just an artefact
introduced by our use of the self-consistent model
in Hutchinson's version. In connection with FEM
modelling it should be mentioned that one of the
present authors is involved in a synchrotron inves-
tigation of the variation in lattice strain in individ-
ua grains in tensile-deformed copper with the am
of elucidating the actual effect of the interaction
between neighbouring grains (cf. [14] as cited in
the introduction).

5. Conclusion

Based on self-consistent calculations (using the
Hutchinson approach [15]) for plane-strain and
tensile deformation of texture-free stainless steel to
low strains followed by relaxation to zero macro-
scopic stress we find that the 422 and 111 reflec-

tions are best suited as indicators for the macro-
scopic residua stress. they show the smallest
maximum deviation from zero residua lattice
strain for all possible measuring directions.
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